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Abstract

Natural fault damage zones are composed of clusters of sub-seismic-scale faults surrounding larger faults. In siliclastic rocks these faults

often form partial barriers to flow and significantly influence fluid flow. A three-dimensional statistical model of fault damage zone

architecture, incorporating fault size, orientation and spatial characteristics observed in natural examples, is used with a two-dimensional

discrete fault flow model to investigate fluid flow and up-scaling of permeability in fault damage zones with a permeability contrast between

rock matrix and fault rock of four orders of magnitude. Models that incorporate realistic fault orientation distributions show mean bulk

permeabilities that are up to two orders of magnitude lower than the rock matrix. Incorporating spatial clustering of smaller-scale faults

around large faults results in a higher variance of bulk permeability. The degree of ‘efficiency’ of 50 by 50 m faulted regions (spanning the

fault damage zone) is characterized by comparing their bulk permeability with that of the same sized two-dimensional region with a single

spanning fault of constant thickness such that the two areas contain the same proportion of fault rock. Regions of size 50 by 50 m are found to

be around 50% efficient in the direction perpendicular to the main fault and between 1 and 10% efficient parallel to the main fault. The

efficiency of the fault network, thus defined, was found to be insensitive to the exponent of the power law length distribution. This concept of

fault damage zone efficiency and the modelling results provide a method of estimating bulk rock permeability frommeasurements of the fault

rock proportion from core or bore-hole logs. Bulk fault zone permeability consists of contributions from the fault damage zone and the fault

slip zone on which the majority of the displacement takes place. Estimates of the contribution of the slip zone suggest that the fault damage

zone contributes significantly to the bulk permeability of the entire fault zone when slip zone fault rocks have permeabilities no lower than

around one order of magnitude less than that of deformation bands. However, even when the slip zone dominates the fault zone bulk

permeability, the fault damage zone is likely to have an important influence on flow processes, such as fault seal.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: Permeability scaling properties; Fault damage zones; Siliclastic rocks

1. Introduction

Predicting the hydraulic behaviour of faults is one of the

greatest uncertainties in reservoir- and aquifer-scale flow

modelling. Major faults are typically composed of a slip

zone, within which most of the displacement occurs,

surrounded by a damage zone of minor faults which extends

from metres to tens of metres on either side (Chester and

Logan, 1986). The damage zone itself can have a major

impact on fluid flow and so, when characterizing the impact

of the fault, both the major slip zone and the damage zone

should be taken into account (Caine and Forster, 1999). The

limitations in the resolution of seismic data remain such

that, although major faults are detected, there is little or no

information on the nature of their damage zones. Thus, one

of the main methods of investigating the hydraulic proper-

ties of major fault damage zones is through the study of field

analogues and the use of flow simulations in which models

of the fault damage zone architecture are included

explicitly. Due to the limitations on the number of grid

cells that can be included in reservoir-scale flow models,

major faults are often either represented by zones only one

cell thick or incorporated in the properties of the boundary

between two cells. In these models, the bulk, or up-scaled,

hydraulic properties of the fault and its damage zone are

required. Thus, methods are required to accurately deter-

mine the bulk properties of major faults and their damage

zones from limited in situ data. In this article, the hydraulic

properties of major fault damage zones are studied through

the stochastic simulation of fault networks and the

application of a discrete fracture flow model. Results are
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presented to illustrate the nature of fluid flow through a fault

damage zone and the up-scaling of the results in the form of

bulk permeability.

2. Fault damage zone characteristics

Large-scale faults are surrounded by clusters of sub-

seismic-scale faults that together form a complex defor-

mation volume or damage zone. A number of field studies

over the last 10 years have focused on the architecture of

fault damage zones in both crystalline and siliclastic

sedimentary rocks (Sibson, 1992; Antonellini and Aydin,

1994, 1995; Fowles and Burley, 1994; McGrath and

Davidson, 1995; Caine et al., 1996; Knipe et al., 1998;

Antonellini et al., 1999; Caine and Forster, 1999; Hestham-

mer et al., 2000; Flodin et al., 2001; Shipton and Cowie,

2001; Jourde et al., 2002; Shipton et al., 2002). These show

that major faults are commonly composed of a major slip

zone of one or more major slip surfaces, along which the

majority of the displacement occurs, surrounded by a

damage zone comprising a complex network of low-throw

faults. In siliclastic sedimentary rocks these faults often take

the form of deformation bands along which grain size and

porosity are reduced to form a partial barrier to fluid flow

(Gabrielsen, 1990; Antonellini and Aydin, 1994, 1995;

Fowles and Burley, 1994; Fossen and Hesthammer, 1997;

Fisher and Knipe, 1998; Caine and Forster, 1999; Aydin,

2000; Hesthammer et al., 2000; Flodin et al., 2001; Shipton

and Cowie, 2001; Jourde et al., 2002; Shipton et al., 2002).

The connectivity of the sub-seismic fault network within the

fault damage zone and the permeability contrast between

the rock matrix and deformation bands are major con-

tributors to the effectiveness of the fault zone as a barrier to

fluid flow. Deformation bands and slip planes may also be

accompanied by open fractures along slip planes and joints

that tend to enhance permeability particularly parallel to the

major fault plane (Antonellini and Aydin, 1995; Flodin et al.,

2001; Jourde et al., 2002). In this article, we focus on fault

zones in which minor faults act solely as partial barriers to

flow. Such fault zones have been the focus of research in the

oil industry for some years. The groundwater community

has to date given them less attention, but there is now an

increasing realization that such faults can have an important

impact on flow direction and contaminant transport in

sandstone aquifers (Wealthall et al., 2001).

Detailed studies of fault damage zone architecture

around normal faults in siliclastic rocks (Antonellini and

Aydin, 1994, 1995; Fowles and Burley, 1994; Foxford et al.,

1998; Hesthammer et al., 2000; Shipton and Cowie, 2001;

Shipton et al., 2002) have outlined the main characteristics

of fault zones (damage zones and fault cores). Generally, the

majority of deformation bands and slip planes trend sub-

parallel to the major fault with synthetic and antithetic dips

(Antonellini and Aydin, 1994; Shipton and Cowie, 2001),

although trends highly oblique to the major fault can also

occur (Flodin et al., 2001; Jourde et al., 2002). Trends show

a scatter of 25–308 about the main fault (Shipton and

Cowie, 2001). Synthetic and antithetic structures appear to

be coeval and in overall equal proportions for faults with

displacement of 30 m and more (Antonellini and Aydin,

1994; Shipton and Cowie, 2001), although the abundance of

either set can vary with location within the damage zone

(Hesthammer et al., 2000). However, there is considerable

scatter in the dips so that the range of dips for each set may

overlap (Shipton and Cowie, 2001). Smaller faults with

throws of less than 20 m show a dominance of synthetic

structures, suggesting that antithetic structures are formed

later in the development of the fault in order to

accommodate increasing deformation in the rock surround-

ing the major slip plane (Hesthammer et al., 2000).

Within the damage zone, deformation bands and zones of

deformation bands form well-connected systems in 3D with

eye and ramp structures on a wide range of scales

(Antonellini and Aydin, 1994). Slip planes are less abundant

than deformation bands and are segmented and unconnected

(Antonellini and Aydin, 1994; Shipton and Cowie, 2001).

The width of the damage zone generally correlates with

fault throw (Fossen and Hesthammer, 1997; Beach et al.,

1999; Shipton and Cowie, 2001) and Beach et al. (1999)

found a logarithmic relationship. The damage zone width of

around 75 m for a fault with a 30 m throw found by Shipton

and Cowie (2001) is in agreement with Beach et al. (1999).

The highest density of deformation bands in 1D transects

perpendicular to the fault plane occurs close to the fault

plane and appears to roughly correlate with the throw on the

fault. This density of deformation bands was found to range

from 150 to 200 per metre for faults with a 1000 m throw

(Antonellini and Aydin, 1994), to be around 40 per metre for

faults with a 140 m throw (Knott et al., 1996), and to range

from 15 to 20 per metre for faults with throws of 30–40 m

(Hesthammer et al., 2000; Shipton and Cowie, 2001).

Although there is presently no data on fault length

distributions specifically within fault damage zones, fault

size populations are frequently found to be power law with a

wide range of exponents (Bonnet et al., 2001). Power law

fault throw populations within fault damage zones have

been observed (Knott et al., 1996) and, since fault length

and throw are generally linearly related (see Cowie et al.

(1996) for a review), this suggests that fault length

distributions for fault damage zones are also power law.

The spatial distribution of the minor faults within the

damage zone is one of the more challenging characteristics

to quantify. Fault frequency profiles across fault damage

zones typically show an overall increase towards the major

slip plane (Antonellini and Aydin, 1994; Fowles and Burley,

1994; Knott et al., 1996; Beach et al., 1999; Hesthammer

et al., 2000; Shipton et al., 2002). These profiles also show a

significant variation in frequency and indicate a degree of

clustering of the minor faults within the fault damage zone.

Field studies of damage zones note that deformation bands

occur singly and in clusters around slip planes and that there
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is lateral variability in the number and connectivity of

deformation bands (Antonellini and Aydin, 1994; Fowles

and Burley, 1994; Beach et al., 1999; Shipton and Cowie,

2001). These features also indicate that deformation bands

are typically clustered. In this article, we use a statistical

model of a fault damage zone that honours the observed

length, throw and orientation distributions and simulates the

spatial clustering of minor faults, creating frequency profiles

that are similar to those observed in nature.

3. Generating statistical models for fault damage zones

A statistical approach is used to create 3D models of a

fault damage zone with a range of different characteristics.

This statistical approach is fully described in Harris et al.

(1999, 2003) and only a brief description is given here. The

principal model variables are the fault size, shape and throw

distributions, and orientation and spatial distributions. A

series of sections through a 3D view of a simulated fault

damage zone is shown in Fig. 1.

Field observations and information from the literature are

used to constrain the model variables. Fault length is

assumed to follow a power law distribution in which the

exponent may be varied. A recent review of scaling in

natural fracture systems (Bonnet et al., 2001) shows that

power law fracture length distributions from the literature

exhibit a wide range of exponents from 0.8 to 3.5. However,

after selection according to the quality of the data sets and

the analyses, this range was reduced to 1.7–2.75 with a

maximum around 2.0 (cumulative frequency distribution

exponents). In this study, two exponents, 1.8 and 2.2, are

chosen for input to the model to represent the range of most

commonly occurring exponents.

Fault trend and dip distributions are each assumed to be

normally distributed with mean orientation equal to that of

the major fault plane and with a standard deviation of

around 108. This corresponds well to the spread of minor

fault strikes of 25–308 reported by Shipton and Cowie

(2001). In the model, only one mean dip orientation is

included, corresponding to synthetic minor faults. Thus the

models best simulate damage zones of faults with around

20–30 m of throw for which the minor fault population is

dominated by synthetic faults (Hesthammer et al., 2000).

The variations in the strike and dip distributions generate a

variation in orientation, as is observed in nature, and allows

faults within the simulated damage zone to intersect and

form connected networks. Each fault is modelled as an

ellipse with a horizontal long axis and an aspect ratio that

follows a Gaussian distribution with a mean of 2 and a

standard deviation of 0.05. The aspect ratio of 2 is typical of

isolated normal faults, whilst restricted faults that interact

with other faults show a range from 0.5 to 3.5 (Rippon,

1985; Nicol et al., 1996). The variation in aspect ratio

allowed in the model helps to mimic the variation in fault

shape generated by interacting faults.

The thickness of fault rock is related to fault length, its

displacement and the lithology. A review by Gillespie et al.

(1992) indicates that fault displacement:length ratios for

high porosity sandstones lie in the range of 1:30–1:500,

centring on a ratio of around 1:100. Data from Shipton et al.

(2002) give ratios of around 1:10–1:60, which suggests a

slightly broader spread than quoted in Gillespie et al.

(1992). Manzocchi et al. (1999) gives the ratio between fault

rock thickness and fault displacement, for major faults, as

1:66 from field observations, with effective ratios of 1:170

suggested for flow modelling. Since minor faults and

deformations bands tend to show rather uniform thickness

along their length, a ratio for thickness:displacement of

1:100 has been chosen. Thus, in the model, a linear

relationship between fault thickness and long-axis length is

used with a thickness:length ratio of 1:104. A simple model

for throw distribution over the fault plane is applied in

which the thickness is a maximum at the fault centre and

decreases linearly in all directions towards the fault tip line.

This approximates the distribution of throw seen in isolated

faults (Childs et al., 1995). Restricted faults show similar

overall patterns, although throw distributions are compli-

cated by interaction with other faults. Including the effects

of fault interaction on throw is presently beyond the scope of

the model, so a simple model in which the throw, and

therefore thickness, distribution over each fault plane

resembles that of an isolated fault is adopted.

The model incorporates the possibility of two types of

fault spatial distribution. In the simplest model (model 1),

fault centres are distributed randomly and the location of

each fault centre is independent of every other fault centre.

This represents the simplest possible spatial distribution and

one that is commonly adopted in fault system models (e.g.

Caine and Forster, 1999). This spatial distribution does not,

however, reproduce natural fault frequency profiles around

a fault, since model frequency profiles across the fault

approach a uniform distribution (see Fig. 2a). To provide a

better model of the pattern in observed fault frequency

distributions, a clustered spatial distribution is generated by

concentrating small faults around large faults in a

hierarchical fashion. In this model (model 3), the major

(longest) fault has the greatest proportion of minor faults

around it, but other large faults within the damage zone also

have clusters of smaller faults associated with them. Fig. 1

shows an example of a 3D fault damage zone simulation

with spatial clustering which clearly demonstrates the

hierarchical clustering of small faults around larger ones.

A total of six 3D models of fault damage zones,

comprising two exponents of the fault size distribution

(1.8 and 2.2) and the three spatial models described above,

were generated using the parameters listed in Tables 1 and

2. These models represent increasing complexity in the

modelling techniques and an increasing resemblance to

natural fault damage zone systems. Model 1 comprises a

random fault orientation distribution with a random spatial

distribution. This represents the simplest possible damage
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zone model and provides a base case that allows the impact

of more geologically realistic fault orientation and spatial

distributions to be quantified. Model 2 includes the fault

orientation distribution with a mean parallel to the major

fault and a spatially random distribution of fault locations.

This corresponds to commonly used models for zones of

intense fracturing, including fault damage zones (Caine and

Forster, 1999). The final model 3 resembles model 2 but

incorporates spatial hierarchical clustering of faults to test

the impact of more geologically realistic spatial

distributions.

Fig. 1. A view of sections through a 3D stochastic model of a fault damage zone. The fault population has a power law length distribution and small faults are

clustered around the larger faults in a hierarchical fashion (model 3).

Table 1

Fault damage zone models: constant input parameters

Fault attributes Value

Maximum fault length, lmax (m) 10,000

Minimum fault length, lmin (m) 2.5

Aspect ratio Gaussian: m ¼ 2, s ¼ 0.05

Fault plunge angle 08

Fault length:thickness ratio 10,000:1
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Each of the 3D models of a fault damage zone represents

a cuboidal region centred on the major fault plane (see Fig.

8a). This major fault plane is represented by an ellipse with

a horizontal long axis of 3 km and a vertical short axis of

1.5 km. The simulated fault damage zone volume measures

1 km horizontally parallel to the fault trend, 150 m in the

vertical direction, and is 80 m thick. For all models this

volume contains 1.5 million faults. In Fig. 2, the frequency

of faults in 1D transects perpendicular to the main fault are

shown and examples of 2D sections through these three

models are illustrated in Fig. 3. For the frequency profiles

(Fig. 2), models 1 and 2 show an overall constant frequency

across the damage zone produced by the random spatial

distribution model (Fig. 2a). Model 3, with a hierarchical

clustering of faults, produces an overall clustering around

the major fault plane (Fig. 2b). This frequency distribution

shows the many subordinate peaks within the profile that are

observed across natural fault damage zones, an example of

which (from the Ninety Fathom fault in Northumberland,

England; Harris et al., 2003) is shown in Fig. 2c. Fig. 2c also

Fig. 2. Fault frequency profiles across the three fault damage zone models: (a) a profile representative of models 1 and 2 (random spatial distributions) which

shows a uniform frequency profile, and (b) model 3 (fault trend and clustered spatial distribution) where frequencies increase towards the location of the major

fault at 40 m. These model profiles can be compared with the frequency profile across a natural fault (the Ninety Fathom fault, Northumberland, UK) in (c).

Model 3 shows a profile type that most closely resembles the natural case.

Table 2

Fault damage zone models: modified input parameters

Model Spatial model Orientation Length exponents

1 Random Random dip and strike 1.8, 2.2

2 Random Gaussian dip and strike, s ¼ 108 1.8, 2.2

3 Hierarchical clustering Approximately Gaussian, s . 108 1.8, 2.2
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shows that the minor faults are concentrated in a zone about

40–50 m wide and that the maximum frequencies are

around 20 per metre. This compares well with the width of

fault damage zones and the maximum frequencies of minor

faults and deformation bands for normal faults in clean

sandstones having lengths of around 3–4 km and with

throws of around 30–40 m (Hesthammer et al., 2000;

Shipton and Cowie, 2001).

4. Up-scaling of bulk permeability in heterogeneous

rocks

Flow modelling is today routinely used to predict

hydrocarbon reservoir and aquifer behaviour and to plan

hydrocarbon production and water abstraction strategies.

The first step in this process is to build a geological model of

the reservoir or aquifer, which honours the available data

from seismic, bore-hole log and laboratory sources. Gaps in

the data can be filled through stochastic modelling of small-

scale heterogeneities, such as sedimentary structure and

sub-seismic faults. This geological model frequently

incorporates heterogeneities on scales of a few centimetres

upwards and typically contains of the order of 107 grid cells

(Pickup et al., 1995). Grid cells are commonly a few tens of

metres horizontally and a few metres vertically. Flow

simulators, however, are limited to 104 to 105 grid cells due

to computational limitations, with grid cells typically a few

hundreds of metres horizontally and a few tens of metres

vertically. Thus, flow simulator cells are typically two to

three orders of magnitude larger than cells in the geological

model. The process of transforming the geological infor-

mation on a fine grid into hydraulic properties on the coarser

flow simulator grid is known as ‘up-scaling’ and is a topic of

intensive research today. The aim of up-scaling is to

reproduce the global behaviour of the reservoir while

representing the local behaviour as well as possible. There

exists a wide range of up-scaling techniques in the literature

that vary in accuracy, applicability and speed. There are a

number of good reviews of up-scaling techniques in the

literature (e.g. Sanchez-Vila et al., 1995; Kumar et al., 1997;

Renard and de Marsily, 1997) that outline the different

techniques and their advantages and disadvantages, to

which the reader is referred for more details. A brief review

is given here.

Up-scaling methods can be divided into analytical,

stochastic and deterministic methods. Analytical methods

include algorithms for determining upper and lower limits to

up-scaled permeability or methods for determining a single

average permeability. Cardwell and Parsons limits, com-

monly used in the petroleum industry, involve arithmetic

and harmonic means of cell permeabilities in different

sequences (Muskat, 1937; Cardwell and Parsons, 1945).

These averages are accurate estimations of bulk per-

meability parallel (arithmetic mean) and perpendicular

(harmonic mean) to infinitely continuous parallel strata.

These methods have been used to estimate the bulk

permeability of faults and their damage zones, both parallel

and perpendicular to the fault, by Antonellini and Aydin

(1994, 1995) and Shipton et al. (2002), where they

incorporate the different permeability properties of defor-

mation bands, zones of deformation bands, slip planes and

the fault core. Averaging algorithms include geometric and

power averages, derived through stochastic theory. Power

averaging techniques have been compared with arithmetic

and harmonic mean averages for up-scaling of the

permeability of fault zones by Shipton et al. (2002).

Stochastic methods assume that the statistical properties of

the permeability field are known and are used to derive

analytical expressions for the effective permeability, which

is defined as the permeability approached as the sample size

increases. An example is the effective permeability of an

isotropic random field of permeabilities that is given by the

geometric mean of individual cell permeabilities (Matheron,

1967). However, these methods can strictly only be applied

to a small number of spatial permeability distributions.

Many, if not most, geological situations fall outside these

cases. Deterministic methods are applicable where the

(a)   model 1 (b)   model 2 (c)   model 3

Fig. 3. 2D sections (20 by 20 m) through 3D fault damage zone simulations illustrating the three spatial and orientation models. (a) Model 1: random spatial

distribution of fault centres and random orientation distribution. (b) Model 2: random spatial distribution of fault centres with fault orientations normally

distributed about the trace of the major fault. (c) Model 3: small faults are clustered around larger faults in a hierarchical fashion and orientations are

approximately normally distributed about the major fault trace.
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fine-scale permeability is known (e.g. from a fine-scale

geological model) and these include analytical and numeri-

cal solutions of the flow field based on Darcy’s law, and the

applications of percolation theory, effective media theory,

stream line methods (for sand–shale mixtures) and

renormalization (Renard and de Marsily, 1997).

The most widely applied method that can be used for any

heterogeneity field is the solution of the flow field based on

Darcy’s law. In complex permeability fields, the problem

must be solved numerically and codes that are capable of

this are now widely available. In applying numerical flow

models to determine block permeability, boundary con-

ditions much be chosen. Up-scaled ‘block’ permeability is

not an intrinsic property, but is dependent on boundary

conditions and the permeability variations that surround it.

Accurately determining these boundary conditions involves

running a fine-scale geological model, or large parts of it, in

a flow simulator (Almeida et al., 1996), but this tends to be

computationally rather intensive. The classical method is to

apply no-flow conditions on the boundaries parallel to the

flow direction and a constant pressure difference between

the other boundaries. This gives the permeability in the

direction of flow. This is a local approach in which the block

is considered in isolation from its surroundings. This

method of up-scaling has been used for faults and fault

zones by Caine and Forster (1999) (open fractures), and

Flodin et al. (2001) and Jourde et al. (2002) (fractures as

both flow barriers and conduits).

In the following, up-scaling of the permeability field is

carried out using the classical approach, i.e. a numerical

flow model is used to determine the equivalent permeability

of the block as a whole in the direction of the applied

pressure gradient. This method allows the complexity of the

fault network architecture within the fault damage zone to

be taken into account.

5. Flow modelling in rocks where faults are flow barriers

A 2D finite-difference discrete fracture flow model

(Odling and Webman, 1991) for flow in fractured rocks

has been modified to simulate flow in porous rocks with

fractures (faults) as flow barriers. In this flow model, both

the faults and the rock matrix are discretized onto a regular

square grid (Fig. 4). Each element within this grid is

assigned a permeability representative of the rock matrix

together with any fault rock. Flow in both the rock matrix

and the fault rock is assumed to be laminar, which is valid as

long as the flow rates are sufficiently small. In this case,

Darcy’s law applies in the form:

Q ¼ 2
k

m

dP

dl
ð1Þ

where Q is the magnitude of the Darcy velocity or the fluid

flux per unit cross-sectional area, k is the permeability, m is

the dynamic viscosity of the fluid, and dP/dlis the local

pressure gradient. A global pressure gradient is enforced

across the model and the pressure at each node is

determined by assuming local conservation of flow, i.e.

that the net flow towards each node equals zero (see Fig. 4).

Having the pressure field, the flow field can be determined

using the local permeabilities.

For elements that represent faults, the matrix block

represented by a grid element includes a segment of fault

(see Fig. 5a). In the case of faults as permeability barriers, a

fault can be thought of as a thin plate of low permeability

material. The permeability that should be assigned to these

blocks in the grid is therefore the bulk permeability associated

with the combinedmatrix and fault. In order to calculate these

bulk permeabilities the direction of flow relative to the fault

orientationmust be identified. The appropriate permeability of

blocks representing faults can then be simply calculated using

the formulae for adding permeabilities in series and parallel

(Muskat, 1937; Pickup et al., 1995) (see Fig. 5b). For flow

alongagridelement parallel to a fault the arithmetic average of

permeabilities is used:

�k ¼

PN
i¼1tikiPN
i¼1ti

ð2Þ

and for flow along a grid element perpendicular to a fault the

harmonic average is used:

�k ¼

PN
i¼1ti=kiPN

i¼1ti

" #21

ð3Þ

where ti is the thickness of each of the N layers and ki is the

corresponding permeability.

Eqs. (2) and (3) are precise for the case when the fault is

parallel to the grid directions. However, in the majority of

cases the fault is at an angle to the grid directions. To

Fig. 4. In the 2D finite-difference flow model, the fault pattern is discretized

onto a regular square grid (thick lines) while ensuring that the connectivity

properties of the fault system are maintained. The remaining grid elements

represent rock matrix. The grid elements are assigned permeabilities

representative of faults (kf) or matrix (km). No-flow boundary conditions are

applied to the top and bottom of the region and a pressure gradient is

imposed from left to right. Darcy’s law is assumed to apply (laminar flow)

and the pressure field is solved by assuming mass conservation at each

node, i.e. that the net flow into each node from the four connecting grid

elements equals zero.

N.E. Odling et al. / Journal of Structural Geology 26 (2004) 1727–1747 1733



investigate the effect of orientation, a large-scale flowmodel

was run, in which the layer representing the fault was 10

cells wide in a grid of 100 by 100. It was found that, for layer

angles, u, of greater than 458 to the imposed pressure

gradient, the effective thickness, t0 ¼ t=sinu, of the layer

must be used (see Fig. 5c), and the bulk permeability

(relative to the matrix permeability km) to be assigned to the

grid element is:

�k ¼ 12
t

sinu
þ

t=sinu

r

� �21

ð4Þ

where r is the ratio of the fault permeability to the matrix

permeability. By contrast, for angles u , 458 the fault is a

discontinuous barrier (see Fig. 5c), and flow can take place

through the matrix, around the fault, resulting in a bulk

permeability much closer to the matrix permeability. Here,

bulk permeability can be closely approximated by summing

the permeabilities of sections in parallel (see Fig. 5c), where

the permeability of the central section B containing the fault

is obtained using the harmonic average of fault and matrix

permeabilities. This results in the following formula for the

bulk permeability of a grid block:

�k ¼
t=sinu

ðtanuþ t=cosuÞ=r þ 12 tanu2 t=cosu
þ 12

t

sinu

� �21

ð5Þ

The two equations (4) and (5) are used to assign

permeabilities to grid elements that represent fault elements.

An additional correction must also be made for the effect

of gridding on fault length. When a fault is parallel to the

directions of the grid, the gridded length is equivalent to the

true fault length. However, when the fault is oblique to these

directions it is represented by a ‘staircase’ of grid elements,

the summed length of which is greater than the original fault

length (see Fig. 5d). To compensate for this, a correction

factor is applied that decreases fault element permeability,

thus ensuring the correct flow for a given pressure gradient.

The correction depends on the angle, u, of the fault to the

grid, and the following three cases arise:

k0 ¼
kðsinu2 1

2
cosuÞ

sinuþ cosu
for u $ 63:48 ð6Þ

k0 ¼
k

2
for 33:78 # u # 63:48 ð7Þ

k0 ¼
kðcosu2 1

2
sinuÞ

sinuþ cosu
for u # 33:78 ð8Þ

In large grids and detailed fault networks it may be possible

for the thickness of a fault to exceed the size of a grid

element. If this occurs the excess thickness is equally

divided between the grid elements on either side.

In discretizing the fault network onto the regular square

grid, the connectivity of the network can become altered.

The most common effect is that faults may become

connected where they were not before. Such effects can

seriously affect the flow through the faulted region.

Automatic checks are performed against the connectivity

of the original fault map to ensure that the connectivity of

the gridded networks correctly reflects the connectivity of

the system. The above corrections for the grid orientation

and the connectivity checks ensure that the characteristics of

the fault network that control flow are correctly represented

Fig. 5. Discretization of faults onto a regular grid for input to the flow

model. (a) In the case of faults as flow barriers, the faults are represented by

thin plates of low permeability material. The presence of a fault must be

taken into account for grid elements that lie along, or abut against, the

discretized trace of the fault. (b) The permeabilities assigned to grid

elements are given by the harmonic average of matrix and fault

permeabilities when the fault is perpendicular to the flow direction, and

by the arithmetic average of these permeabilities when the fault is parallel

to the flow direction. (c) In calculating the effective permeability for a grid

element, the effective thickness, t0, of a fault whose angle, u, to the flow

direction is greater than 458 is used. For faults at angles, u, less that 458 to

the flow direction, the harmonic average permeability of sections A, B and

C is calculated, where the permeability of the central section, B, containing

the fault is given by the harmonic average of the permeabilities in that

section. (d) Where a fault is oblique to the grid directions, it is represented

by a staircase geometry. A correction is made to the permeability assigned

to fault elements to account for the resulting increase in length.
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in the model and that the model results are independent of

the grid size.

Three simple examples are used to show the effect of

flow barriers on the flow characteristics (see Fig. 6). Here,

flow is simulated in a region 1 m across containing one or

two 5-mm-thick faults, with a permeability contrast between

rock matrix and fault rock of four orders of magnitude,

namely r ¼ 1024. Fig. 6a shows the flow field in a region

with a single fault oriented perpendicular to the pressure

gradient. The plot shows that flow goes both through and

around the fault. The greatest flow rates are generated

around the fault tips and the lowest flow is at the fault mid-

point. Fig. 6b shows the flow field in a region containing a

fault oblique to the pressure gradient. Here, flow is deflected

to become nearly parallel to the fault. There is some flow

through the fault, but the greatest flows are again around the

fault tips. Areas of lowest flow are in the ‘shadow’ regions

close to the fault tips, so that regions of highest and lowest

flow rate are juxtaposed across the fault. Fig. 6c shows the

flow field in a region containing a symmetrical arrangement

of two oblique faults. Here, flow is larger in the top and

bottom quadrants defined by the faults and flow paths curve

towards the fault intersection. Again, flow is greatest around

the fault tips but a significant proportion of the flow crosses

the faults themselves. The lowest flow occurs where the

faults cross and close to the fault tips, where flow diverges to

go either around the fault tips or obliquely across the faults.

Using the flow model, the nature of the flow fields in

complex fault networks in permeable rocks can be

simulated. The use of large grids, up to 400 by 400 in

size, allows the fault networks to be faithfully reproduced in

the model. Examples of the flow fields determined by the

model for a 2D region, 5 by 5 m in size, from a section

through one of the simulations of a fault damage zone, are

shown in Fig. 7. The flow field for a pressure gradient

imposed perpendicular to the main fault (Fig. 7a) shows

small areas of concentrated flow through narrow passages

between the faults and at selected points along the faults.

The arrows show how flow directions vary through almost

1808. The effect of many faults in the region is to

‘compartmentalize’ the flow field into regions of higher

and lower flow with large contrasts in flow rate across faults.

This is especially noticeable where the pressure gradient is

placed parallel to the fault trend so that flow becomes

concentrated into bands through the fault system (see Fig.

7b).

6. Numerical experiment and scaling of bulk

permeability

6.1. 2D sampling of the 3D models for input to the flow

model

Within the simulated volume, a total of 13 equally-

spaced horizontal 2D sections were chosen (see Fig. 8a and

b). In each of these sections, 2D sub-regions ranging in size

from 5 to 50 m were sub-sampled to provide input to the

flow model. These sub-regions, regardless of size, were

centred on points 50 m apart along the trace of the major

fault (see Fig. 8c). This ensures that each set of 2D sub-

regions samples the whole length of the cross-sections. For

each 3D fault damage model, a total of 260 samples (13

sections, 20 sub-regions for each) were taken for each of

four sub-region sizes (5, 10, 20 and 50 m). For each sub-

sample, the major fault has been omitted so that the effects

Fig. 6. Flow simulation results for three simple fault geometries using regions of 1 m in size, faults of 5 mm in thickness, and a permeability contrast

(matrix/fault rock) of four orders of magnitude. White—low flow speed; black—high flow speed; arrows—flow velocity direction. (a) For a single fault the

highest flows occur around the ends of the fault and the lowest flows occur near to the fault centre, since fluid is deflected from the central portions to the fault

tips. Some flow through the fault also occurs. (b) In the case of an oblique fault, the highest flows occur near the fault tips and lowest flows on the opposite sides

of the fault. The fault causes a deflection in the flow field close to it, but still also allows some fluid to pass through. (c) In the case of two oblique faults, the

lowest flows occur in the quadrants open to the inflow and outflow boundaries. In the other quadrants the flow is deflected towards the fault intersection.
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of the fault damage zone alone can be investigated. The

major fault plane forms a slip zone of anastomosing faults

along which the majority of displacement takes place. The

permeability properties of fault rocks formed in this slip

zone can be significantly different from those of minor faults

in the fault damage zone, so that relationships used in the

fault damage zone model may not be appropriate. The

potential relative contributions of the slip zone and the fault

damage to overall fault bulk permeability are further

discussed in Section 9.

6.2. Variations in fault density

Although the 3D fault damage zone models each contain

the same number of faults (1.5 million) in the same volume,

the fault density in the 2D sections (defined as fault trace

length per unit area) varies with the power law length

distribution exponent and the type of spatial distribution The

examples of 20 by 20 m sub-regions for the three spatial

models shown in Fig. 3 illustrate this. The average fault

density and its standard deviation for 2D sections through

each model are plotted against sub-region size in Fig. 9,

where it is observed that models with a length exponent of

1.8 show higher densities. This reflects the greater number

of long faults and smaller number of short faults in this

model relative to the model with a length exponent of 2.2.

For a given length exponent, model 3 shows the highest

densities, reflecting the clustering of faults around the major

fault plane. The standard deviation of the fault density

distribution, in Fig. 9b, is a measure of the variation in fault

density in the models. All models show a decrease in

standard deviation that flattens with increasing model size,

so that the difference between sub-region sizes of 20 and

50 m is negligible. Model 3, regardless of the length

exponent, shows the highest standard deviation, implying a

broader range of fault densities. This reflects the hierarchical

clustering of faults in this model.

7. The scaling of bulk permeability in fault damage zones

The input required by the flow model is the fault

geometry, the variation in thickness of each fault, and the

permeabilities of fault rock and rock matrix The sub-regions

sampled from the 3D fault damage zone models, as

described above, provide the fault system geometry and

fault rock thickness along the faults. A ratio of rock matrix

to fault rock permeability of 104, representative of the

Fig. 7. Examples of the simulated flow fields for a 2D, 5 by 5 m region through the fault damage zone model 3 using a power law exponent of 1.8. White—low

flow speed; black—high flow speed; arrows—flow velocity direction. (a) Flow perpendicular to the major fault results in high flow rates through narrow gaps

between the faults and where two or more faults intersect. Flow directions range through a wide angle ^908 from the applied pressure gradient as fluid is

deflected around the faults. (b) Flow parallel to the main fault trend results in compartments of high and low flow that are bounded by the larger faults. The

range of flow rates is higher (four orders of magnitude) than when flow is perpendicular to the main fault (three orders of magnitude), but flow directions are

less variable.
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permeability contrast commonly found between defor-

mation bands and their host rock, is used (Antonellini and

Aydin, 1994). The grid size was varied according to the size

of the sub-region in order to ensure a valid representation of

the fault system geometry. The chosen grids were 150, 200,

300 and 400 for sub-region sizes of 5, 10, 20 and 50 m,

respectively. No-flow boundary conditions were applied to

the top and bottom of the model and a unit pressure gradient

was applied from right to left. The bulk permeability of the

sampled region is calculated from the total flux of fluid

using Darcy’s law. The flow model is applied twice to each

sub-region, with the pressure gradient applied perpendicular

and parallel to the trend of the major fault.

7.1. The nature of frequency distributions of bulk

permeability

The frequency distributions of bulk permeability,

determined from the 2D flow simulations in directions

perpendicular and parallel to the major fault, have been

investigated, and examples are shown in Fig. 10. There are

48 cases (six models, four sub-region sizes and two flow

directions), each of which contains 260 values of bulk

permeability. The best-fit normal distribution to the log bulk

permeability for each case has been determined using the

Levenberg–Marquardt method (Press et al., 1992), from

which the mean and standard deviation were estimated. The

majority of the samples showed acceptable fits to a log–

normal distribution using the Kolmogorov–Smirnov test

(e.g. Cheeney, 1983), with 38 of a total of 48 samples

showing fits to a confidence level of 99%. This shows that,

generally, bulk permeability is log–normally distributed.

However, cases of smaller sub-regions (5 and 10 m),

particularly for flow parallel to the trend of the major

fault, show asymmetric distributions of log permeability,

some of which showed unacceptable fits to a log–normal

distribution (see Fig. 10). These distributions are skewed

towards the matrix permeability and show a tendency

towards a power law distribution with an exponent (slope of

the graph) of around 0.9. Smaller sub-regions contain fewer

faults with networks that can be poorly connected. These

networks allow flow pathways that cross few faults,

especially in the direction parallel to the main fault when

fault trend is included in the model (models 2 and 3). This

results in bulk permeabilities dominated by the matrix

permeability and a skewed frequency distribution. Thus

bulk permeability is log–normally distributed provided that

the samples contain enough faults to provide connected

networks.

7.2. Mean log bulk permeability and its variance

For each of the six models, for directions parallel and

perpendicular to the main fault, the means of the log bulk

permeability (geometric mean) and their variances are

plotted in Fig. 11. Generally, bulk permeabilities are

between one and two orders of magnitude lower than the

rock matrix perpendicular to the main fault, and up to one

and a half orders of magnitude lower parallel to the main

fault. Although Fig. 11a shows a slightly decreasing trend,

bulk permeability is essentially independent of sub-region

size. Model 1 (isotropic), as expected, shows similar

permeabilities for directions parallel and perpendicular to

the main fault. Models 2 and 3 display very similar bulk

Fig. 8. (a) The relationship between the sample volume and the major fault,

which is represented by an ellipse. The main fault is 3 km long (horizontal

axis) and 1.5 km wide (vertical axis). The sample volume in which the fault

network is simulated measures 1 km horizontally, 150 m vertically and is

80 m wide. (b) The relationship between the sample volume and the

sampled 2D sub-regions. The 13 2D horizontal sample planes are shown.

(c) An example of a sample plane with the location of the 20 sub-regions,

centred at regular intervals along the trace of the main fault.

Fig. 9. Variations in (a) the average fault density, defined as the fault trace

length per unit area, and (b) the standard deviation, with the sub-region size,

calculated from 260 measurements in each case. For a given power law

length exponent, model 3 shows the highest fault density and model 1

shows the lowest fault density. In addition, for a given model type, models

with a power law exponent of 1.8 show greater fault densities than those

with an exponent of 2.2. The range of standard deviations of the fault

density distributions shows that model 3 has the greatest variation, while

models 1 and 2 show similar, but smaller, variations.
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permeabilities for a given sub-region size, power law length

exponent and direction. They show bulk permeabilities

around one half an order of magnitude lower in the direction

perpendicular to, and one half of an order of magnitude

higher in the direction parallel to the main fault, than model

1. Models with a length exponent of 1.8 show permeabilities

around one half of an order of magnitude lower than models

with a length exponent of 2.2, for a given sub-region size

and direction. This reflects their greater fault trace densities

(Fig. 9).

The variances of the bulk permeability distributions

characterize the inherent variation in bulk permeability for

each model and sub-region size, and are plotted for all

Fig. 10. Examples of frequency distributions of bulk permeability (260

values per distribution) for sub-region sizes of 5, 10, 20 and 50 m for model

3 (clustered spatial distribution with preferential fault trend). Frequency

distributions for small sub-region sizes (5 and 10 m) show rather

asymmetric shapes, with a tendency towards power law behaviour, while

distributions for larger samples show a good fit to a log–normal

distribution.

Fig. 11. Variation in (a) bulk permeability and (b) its variance with sub-

region size. Bulk permeability perpendicular to the major fault plane is

around one order of magnitude lower than that parallel to the main fault

plane, except in the case of model 1. Models 2 and 3 with length exponent

1.8 show the lowest permeabilities and are therefore the most efficient

barriers to flow across the fault. Most models show a sharp decrease in

variance of bulk permeability with increasing sub-region size. The variance

has reduced to 0.08, or less, for sub-regions of size 50 m in all models.
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models in Fig. 11b. These plots show a significant decrease

in variance of up to around one order of magnitude with

increasing sub-region size (5–50 m) for all cases. At a sub-

region size of 5 m, the models show a wide range of

variances, with model 1 showing the highest and model 2

the lowest variance for a given length exponent and

direction. At sub-regions of 50 m, all models show similar

variances in the range 0.01–0.07.

As Fig. 11a shows, the introduction of a preferred

orientation distribution in models 2 and 3 results in

significant permeability anisotropy (maximum:minimum

permeability ratio), (see Fig. 12). Model 1, as expected,

shows anisotropy ratios close to one. Models 2 and 3 show

higher anisotropies in the range 7–23, and decreasing

anisotropy with increasing sub-region size. Models with a

length exponent of 1.8 show the greatest change with the

highest anisotropies (.20) at the small sub-region size and

the lowest anisotropies (6–9) at the largest sub-region size.

8. Fault rock proportion and bulk rock permeability

The bulk permeability of a region containing faults is the

result of a complex interplay between the fault geometry

and fault rock thickness A simple method of estimating bulk

permeability is based on summing the fault thicknesses

along a line sample through the rock (Antonellini and

Aydin, 1994, 1995; Shipton et al., 2002). An estimate of the

bulk permeability with respect to matrix, �k, along this line is

then simply given by the harmonic average of fault rock and

matrix permeabilities (Muskat, 1937; Pickup et al., 1995),

weighted by their relative thicknesses along the sample line:

�k ¼
�k0

km
¼ 12

a

A
þ

a

Ar

� �
21

ð9Þ

where a is the total fault rock thickness, A is the total line

length, �k0 is the bulk permeability and r is the ratio of the

fault permeability to the matrix permeability. The 2D

equivalent of this 1D approach can be thought of as

replacing all of the fault rock in an area with a single fault of

uniform thickness that spans the region and is oriented

perpendicular to flow (see Fig. 13). In this configuration, the

fault rock is at its most efficient as a barrier for flow

perpendicular to the fault. Eq. (9) overestimates the bulk

permeability in this direction as it assumes straight-line flow

paths for fluid along the sample line, whereas flow paths are

tortuous and strike a balance between the minimum fault

rock traversed and the minimum overall path length.

However, Eq. (9) provides a method of measuring the

‘efficiency’ of the fault system in the 2D sub-regions for

which bulk permeability has been determined using the flow

model. The equivalent single fault system, for which bulk

permeability can be simply derived analytically, represents

100% efficiency, and lower levels of efficiency can then be

defined by taking smaller proportions of this single fault

thickness. The proportion of fault rock can also be

determined from line samples such as cores and bore-hole

logs, provided that the angle between the sample line and

the fault is large enough to give a reasonable sample of the

fault damage zone. The proportion of fault rock to rock

matrix from core or from good quality optical or acoustic

bore-hole logs is information that is fairly readily available

from hydrocarbon reservoirs and aquifers (Hesthammer

et al., 2000; Shipton et al., 2002) and more easily obtained

than the minor fault length distribution.

In the simulated 2D sample regions from the statistical

fault damage zone model, the proportion of fault rock has

been determined for all samples for which the bulk

permeability has been estimated. Manipulating Eq. (9)

Fig. 12. Mean bulk permeability anisotropy (ratio of bulk permeability

perpendicular and parallel to the main fault) versus sub-region size for all

models. The degree of anisotropy ranges from 7 to 22, except for model 1

which is isotropic. There is a general decrease in anisotropy with increasing

sub-region size. For sub-regions of size 50 m the anisotropy is around one

order of magnitude.

Fig. 13. Definition of fault network efficiency as a barrier to flow. The fault

network (left) is replaced by a region of host rock consisting of a single

spanning fault of uniform thickness (right). Both regions contain the same

proportion of fault rock. The region with a single fault represents the

configuration of fault rock that provides the maximum barrier to flow across

the region and is defined as being 100% efficient. The bulk permeability of

this region can be determined analytically from the harmonic average of

host rock and fault rock permeabilities. Lower levels of efficiency are

defined by regions with single faults of proportionally lower thickness.
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gives:

1
�k
2 1 ¼

a

A

1

r
2 1

� �
ð10Þ

Thus, in a plot of logð1=�k 2 1Þ against the log of the fault

rock proportion, a/A, the case of an equivalent single fault

that spans the entire region is given by a straight line with a

slope of one intercepting the vertical axis (at which

logð1=�k 2 1Þ ¼ 0) at 2logð1=r 2 1Þ. Different degrees of

efficiency are represented by lines of slope one with

different intercepts, so that the (100a)% efficient line has

an intercept of 2log½að1=r 2 1Þ�, where 0 , a , 1. Such a

plot allows easy evaluation of the fault network efficiency

for the fault damage zone models. Plots of these quantities

for the three models and the four sample region sizes are

shown in Fig. 14a and b for power law exponents of 2.2 and

1.8, respectively.

In Fig. 14a and b, the bulk permeability perpendicular

and parallel to the main fault are plotted together, for

models with length exponents of 1.8 and 2.2. As expected,

model 1 (random spatial distribution and orientations)

shows a single cloud as bulk permeability is not sensitive to

the flow direction. For the other models (2 and 3), bulk

permeabilities perpendicular and parallel to the main fault

are separated by a little over an order of magnitude in all

cases, the bulk permeability parallel to the main fault being

the larger and corresponding to lower values of 1=�k 2 1. As

the sample size increases from 5 to 50 m, the spread of

both the fault rock proportion and the bulk permeability

decreases from around two orders of magnitude to a

minimum of half an order of magnitude. Model 2 (random

spatial distribution with trend) shows the most tightly

clustered distributions, with model 1 (random spatial and

orientation distributions) showing the greatest scatter and

model 3 (clustered spatial distribution with trend) lying in-

between.

Fig. 14a and b shows that the smallest sub-region size

(5 m) for all three models has the greatest scatter, ranging

from 100 to 10% efficient for bulk permeability perpen-

dicular to the main fault, and from 10% to less than 1%

efficient for bulk permeability parallel to the main fault. It is

possible for the smallest sub-regions (5 m) to be 100%

efficient if they contain faults that span the region

perpendicular to the flow direction. Larger sub-regions

contain many faults and their efficiency depends on the

connectivity of the fault network. Parts of faults that end

within the matrix do not act as efficient barriers, and so

larger samples always show efficiencies less than 100%. As

the sub-region size increases to 50 m, the scatter of the bulk

permeabilities for models 2 and 3 cluster close to the 50%

efficiency contour for bulk permeability perpendicular to the

main fault, and between the 10 and 1% efficiency contours

for bulk permeability parallel to the main fault. Generally,

the clouds of points for the case of a power law length

exponent of 1.8 in Fig. 14b show permeabilities around one

order of magnitude lower, and fault rock proportions around

a half to one order of magnitude larger, than for the case of a

length exponent of 2.2 (Fig. 14a). This reflects the larger

proportion of long faults with thicker fault rock in the fault

population with a length exponent of 1.8.

Fig. 15 shows a plot of the fault rock proportion versus

1=�k 2 1 for the case of model 3 (clustered with trend) using

the two length exponents 1.8 and 2.2, and a 50 m sub-region

size. The bulk permeabilities perpendicular to the main fault

for each length exponent form elongate trends arranged en

échelon close to the 50% efficiency line. These trends are

aligned slightly obliquely to the 50% efficiency line (slope

of one) and show a slope of 1.2 over almost an order of

magnitude in both cases, with correlation coefficients of

0.97 (linear regression). This suggests that the bulk

permeability perpendicular to the main fault, at a scale

that encompasses most of the damage zone thickness

(50 m), shows a power law relationship with the proportion

of fault rock. The exponent of this power law (1.2) shows

that bulk permeability decreases more slowly than fault rock

thickness increases. Thus, as the fault rock proportion

increases due to increasing fault density, there is a slight

decrease in the efficiency of the fault system as a flow

barrier. For permeability parallel to the main fault, the case

of a length exponent of 1.8 shows a slightly higher

efficiency than for the case of the exponent 2.2. This is

due to the presence of more long faults and their

intersections with other faults that make the existence of

flow pathways through the matrix less probable for flow in

this direction. However, the two trends for exponents 1.8

and 2.2 are very close, and are separated by only a fifth of an

order of magnitude in the case of permeability perpendicu-

lar to the main fault. This indicates that the efficiency of the

system is, in fact, not very sensitive to the power law length

exponent, at least within the range 1.8–2.2.

9. Permeability contributions of fault damage zone

versus fault slip zone

The analysis of the previous sections concerns the effects

of the fault damage zone alone on flow and bulk

permeability. However, major fault zones are composed of

a slip zone, on which the majority of the displacement takes

place, surrounded by the fault damage zone. Slip zones

consist of a number of slip surfaces, with an anastamosing

geometry, along which cataclasis and mineral precipitation

are common (Caine et al., 1996; Knipe et al., 1997, 1998;

Shipton and Cowie, 2001; Shipton et al., 2002). Open

fractures can also exist within slip zones and thus form

potential flow conduits (Caine and Forster, 1999; Flodin

et al., 2001; Jourde et al., 2002). The permeabilities of slip

zones can therefore be highly anisotropic. The permeability

perpendicular to a slip zone dominated by fault rock can

show a wide range, down to very low values (Antonellini

and Aydin, 1994; Fisher and Knipe, 1998, 2001), and the

slip zone can form a significant barrier to flow in its own
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Fig. 14. (a) Log–log plots of fault rock proportion versus 1=�k 2 1 for all models with power law length exponent 2.2 and sub-region sizes (top to bottom) of 5, 10, 20 and 50 m. Model 1—random spatial and

orientation distributions; model 2—random spatial distributions with preferred fault trend; model 3—clustered spatial distribution with preferred fault trend. Bulk permeability values are compared with contours

of fault network efficiency (see text and Fig. 13 for detailed definition). For model 1, bulk permeability values for flow perpendicular and parallel to the main fault plane are indistinguishable. Models 2 and 3 are

around 50% efficient perpendicular to the main fault and between 1 and 10% efficient parallel to the main fault. The scatter in the bulk permeabilities reduces as the sub-region size decreases. (b) As for (a) but for

exponent 1.8. The spread of bulk permeabilities for a given sub-region size is lower than for models with an exponent of 2.2, particularly at smaller sub-region sizes.

N
.E

.
O

d
lin

g
et

a
l.

/
Jo

u
rn

a
l

o
f

S
tru

ctu
ra

l
G

eo
lo

g
y

2
6

(2
0

0
4

)
1

7
2

7
–

1
7
4

7
1
7
4
1



right. It is of interest to consider the possible range in

relative contributions of the fault damage zone and the slip

zone to the permeability of the major fault as a whole. Here

only the impact of fault rock itself is considered, neglecting

any open fracture surfaces associated with the slip zones.

The effective permeability of a slip zone depends on both

the width of the fault rock material and its permeability. The

width of the fault rock is in general related to the amount of

displacement on the fault, which in turn is dependent on the

size of the fault, the host rock lithologies, rock strengths,

and interaction with other faults.

A review of the relationship between fault dimensions

and displacement has been made by Gillespie et al. (1992),

who summarises a number of large data sets with fault

lengths spanning a total range of seven orders of magnitude.

The present analysis is based on an isolated fault of 3 km in

length (horizontal dimension) in clean, high porosity

sandstones. From Gillespie et al. (1992), the data sets

from high porosity sandstones indicate that, for a fault with

a length, L, of 3 km, possible displacements, D, range from

3 to 100 m, with most faults showing displacements lying in

the range of 5–50 m, corresponding to L/D ratios between

60 and 600. Manzocchi et al. (1999) have reviewed the

relationship between fault displacement and the cumulative

thickness of the fault rock in the fault zone. They show that,

on average, the fault rock thickness, t (m), on a slip zone is

related to the displacement, D (m), through the following

linear relation:

t ¼
D

66
ð11Þ

This is in reasonable agreement with recent data from

Shipton and Cowie (2001) for a normal fault in porous

sandstones from Utah with a throw of 30 m and a fault core

thickness of 30 cm. Eq. (11) would predict a thickness of

45 cm here, which is close to the observed value. However,

observations show a wide scatter in which the thickness

values for a specific displacement span two orders of

magnitude (Evans, 1990; Gillespie et al., 1992; Knott et al.,

1996). Observations of outcrops also show that fault zone

thickness is highly variable on scales of tens of metres or

less within a single fault (Evans, 1990; Shipton and Cowie,

2001; Jourde et al., 2002). In such a geometry, fluid flow

across slip zones will tend to concentrate in areas with low

net fault rock thickness. Manzocchi et al. (1999) therefore

suggest that, over sufficiently large volumes (with dimen-

sions of some tens of metres), the effective thickness of the

fault for flow is given by the harmonic average of the

thickness data, giving the modified relation:

t ¼
D

170
ð12Þ

The permeability of fault rock material in slip zones

ranges widely through several orders of magnitude and

depends on the pressure–temperature conditions at the time

of fault movement, and the lithology (in particular, the

amount of clay minerals present). Studies of fault rocks in

high porosity sandstones (Antonellini and Aydin, 1994,

1995; Fisher and Knipe, 1998, 2001) show that their

permeability ranges from values similar to that of a

deformation band to at least three orders of magnitude

lower, a range equivalent to between three and seven orders

of magnitude lower than the host rock permeability.

To assess the potential effects of the slip zone relative to

the fault damage zone on total fault zone bulk permeability,

the bulk permeability of a 50 by 50 m region, spanning the

width of the fault damage zone and containing a slip zone, is

estimated. Here, it is assumed that the slip zone traverses the

whole of the 50 m region, so that the bulk permeability

perpendicular to the fault zone is given analytically by the

harmonic average of the bulk fault damage zone per-

meability and the slip zone fault rock permeability:

�ktf ¼
12 t=50

kfdz
þ

t=50

ksz

� �21

ð13Þ

where �ktf is the total fault zone bulk permeability, t is

the thickness of the fault rock in the major slip zone, kfdz
is the bulk permeability of the fault damage zone, and ksz is

the permeability of the slip zone fault rock. Here, all

Fig. 15. Log–log plot of fault rock proportion versus 1=�k 2 1 for sub-region

sizes of 50 m for model 3 (clustered spatial distribution and preferred fault

trend), showing a comparison of the models for power law length exponents

of 1.8 and 2.2. Bulk permeability values perpendicular to the main fault

follow en échelon trends that are close to the 50% efficiency line. This

shows that the relationship between bulk permeability and fault rock

proportion is not very sensitive to the exponent of the power law length

distribution.
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permeabilities are normalized with respect to the host rock

permeability.

The two values of 0.01 and 0.04 (with respect to host

rock permeability) for the bulk fault damage zone

permeability are used, representing the geometrical means

of bulk permeability perpendicular to the major fault for

model 3 with fault length distribution exponents of 1.8 and

2.2, respectively. A range of fault displacements ranging

from 5 to 100 m is used to calculate the effective fault rock

thickness within the major slip zone, using Eq. (12), and this

fault rock is assigned a range of permeabilities from four to

seven orders of magnitude lower than the host rock (up to

three orders of magnitude lower than deformation band

permeability). Bulk permeabilities for the fault zone as a

whole are then calculated using Eq. (13) and shown as solid

lines on a plot of fault displacement versus bulk

permeability in Fig. 16. In addition, the impact of the

major slip zone alone is calculated for comparison using the

host rock permeability in place of the fault damage zone

permeability in Eq. (13), and this is shown as dashed lines in

Fig. 16. By comparing these two sets of lines, the influence

of the damage zone and the slip zone on bulk permeability

can be seen.

Fig. 16 shows that the influence of the slip zone itself on

the total fault zone bulk permeability increases with

increasing displacement in a non-linear fashion. When the

major slip zone fault rock has a permeability similar to that

of deformation bands (R ¼ 1 in Fig. 16), the fault damage

zone makes a significant contribution to the bulk per-

meability (the solid line lies significantly below the dashed

line in Fig. 16). However, when the permeability of the slip

zone fault rock is an order of magnitude (R ¼ 10 in Fig. 16)

or more lower than the permeability of deformation bands,

the major slip zone dominates the bulk permeability of the

whole fault zone (the solid and dashed lines in Fig. 16 are

close). These effects are most marked when the fault

displacement, and therefore fault rock thickness, is large.

Thus, the fault damage zone can be expected to make a

significant contribution to the bulk permeability of the

whole fault zone in cases where the permeability of the slip

zone fault rocks is similar to, or at most one order of

magnitude lower than, that of deformation bands. Other-

wise, the slip zone dominates the total fault zone bulk

permeability.

10. Discussion

A series of stochastically generated 3D models of fault

networks in fault damage zones within highly porous

sandstones has been generated. The three types of spatial

and orientation distribution models represent an increas-

ingly good approximation to the geometry of natural fault

damage zones. 2D samples from these models have been

used as input to a 2D finite-difference discrete fracture flow

model in which the minor faults are modelled with a

Fig. 16. Relationship between displacement and total fault zone

permeability (fault damage zone and slip zone) for model 3 of the fault

damage zone using power law fault length exponents of (a) 1.8 and (b) 2.2.

In each case, the geometric mean of permeability values determined for the

fault damage zone alone is shown by the thick lines (kfdz). The solid thin

lines (labels on right) show the permeability of the whole fault zone (fault

damage zone and slip zone) for different ratios, R, of the minor fault rock

permeability to the slip zone fault rock permeability. The dashed lines

(labels on left) show the equivalent contours for the fault slip zone alone.

The plots show that the fault damage zone makes a significant contribution

to the permeability of the fault zone as a whole when R is less than an order

of magnitude.
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permeability four orders of magnitude lower than the host

rock, typical of deformation bands in high porosity

sandstones. The flow model has then been used to

investigate the bulk permeability of faulted rock volumes

and its relationship to region size, spatial model, and power

law fault length exponent.

The spatial model 3 incorporates hierarchical clustering

of faults, and generates fault frequency profiles that closely

resemble those observed across natural fault damage zones.

The model assumes a single distribution of synthetic fault

dips rather than a distribution with two dip modes

representing synthetic and antithetic faults. For faults with

throws larger than around 20–30 m, damage zones contain

both synthetic and antithetic faults (Antonellini and Aydin,

1994; Hesthammer et al., 2000; Shipton and Cowie, 2001),

so that our model, which is based on a fault of 3 km length

and throw around 30 m, is most representative of smaller-

scale faults with throws of 30 m or less. The presence of

both synthetic and antithetic faults in the damage zones of

larger-scale faults will have an important impact on the 3D

connectivity of the system (Antonellini and Aydin, 1994).

However, as input to the flow model we have used 2D

samples that are perpendicular to the fault plane and contain

the direction of the fault long axis. For a normal fault, this

sample plane orientation contains the strike direction of the

faults, and thus the dip model has no impact on connectivity

within this plane. The results we have shown can therefore

also be relevant to the bulk permeability within this sample

plane, for larger-scale faults. However, if bulk permeability

parallel to the major fault short axis (slip direction) is to be

determined, it is necessary to include both synthetic and

antithetic faults in the model.

In the model we have assumed that all minor faults have

a permeability representative of deformation bands. Field

observations (Antonellini and Aydin, 1994; Shipton and

Cowie, 2001) indicate that slip planes also occur within the

damage zone and can have wall rocks of very low

permeability. However, these are generally sparse and

unconnected within fault damage zones, and only form

connected networks in the fault slip zone. Within the

damage zone, flow pathways around such slip planes will

exist and they will therefore have a minimal effect on the

bulk permeability, although their presence will tend to

locally increase flow pathway tortuosity.

The simulated flow fields show how the complex fault

systems within fault damage zones influence fluid flow.

Flow rates span a range of three to four orders of magnitude

and are highest around the tips of faults, in narrow gaps

between unconnected faults, and at fault intersections.

When the applied pressure gradient is parallel to the main

fault, the fault system compartmentalizes the region into

bands of high and low flow that tend to be delineated by the

larger faults. These features show how preferential flow

pathways both perpendicular and parallel to the major fault

system within the fault damage zones develop. In two-phase

flow, the pathways of least flow resistance may transmit

hydrocarbons across the fault at lower differential pressures

than suggested by the bulk permeability behaviour of the

fault. This suggests that faults may leak over a much wider

range of pressure conditions than generally assumed.

The bulk permeabilities of fault damage zones deter-

mined by the flow model over a range of sub-region sizes

show the impact of the different spatial and orientation

models. The inclusion of a realistic orientation distribution

(models 2 and 3) results in a permeability anisotropy of

around an order of magnitude, with permeabilities half an

order less than and greater than those of the simple random

model (model 1). The addition of hierarchical clustering

(model 3) increases the variance in bulk permeability,

reflecting a wider range of flow behaviour and suggesting

effective sealing over a reduced range of pressure

conditions. In the case of a contaminated aquifer, this

increased variance suggests greater transport of contami-

nants across the fault.

Mean bulk permeability does not vary much with sub-

region size (5–50 m) but the variance decreases dramati-

cally as the sub-region size increases. In reservoir-scale flow

models, grid blocks are around 100 m, large enough to

contain the bulk of the damage zone width of many

seismically resolvable faults. Such flow models require

permeabilities that are representative of the fault damage

zone as a whole. The modelling results suggest that these

bulk permeabilities are log–normally distributed, with 99%

of the distribution lying within one order of magnitude. This

distribution of permeability should be used to assign

permeabilities to grid blocks in large-scale flow models.

In addition, in more detailed flow models with smaller grid

blocks, a permeability distribution with a larger variance

should be used. This is at odds with the common practice of

assigning constant or smoothly varying hydraulic properties

along the length of major faults in reservoir-scale flow

models, a practice that results largely from a lack of more

detailed information. Assigning variable bulk permeabilities

along the length of a major fault will concentrate flow

through the higher permeability sections of the fault and

impact on the sealing properties of the model fault.

The ‘efficiency’ of a faulted region within a fault damage

zone as a barrier to flow has been defined with respect to the

same sized region with a single fault of uniform thickness,

containing the same proportion of fault rock area. The

model results indicate that 50 m sub-regions that span the

fault damage zone are close to 50% efficient perpendicular

to the main fault, but only 1–10% efficient parallel to the

main fault. The two power law fault length exponents, 1.8

and 2.2, for model 3 (the most realistic spatial and

orientation model) result in two elongate trends on the

plot of fault rock proportion versus 1=�k 2 1.

These trends have a slope of 1.2, slightly oblique to the

efficiency contours. Model 3 with a power law length

distribution exponent of 1.8 results in permeabilities that are

half an order of magnitude lower than those with an

exponent of 2.2. Although the models contain the same
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number of faults, the greater abundance of longer, and

therefore thicker, faults in the model with a length exponent

of 1.8 creates a more efficient barrier to flow. However, the

two trends are arranged en échelon close to the 50%

efficiency line on the plot (Fig. 15) in both cases, differing

by only 10–20% for a given fault rock proportion. Thus, the

relationship between fault rock proportion and bulk rock

permeability is not very sensitive to the length exponent, at

least between the exponent values of 1.8 and 2.2. This

suggests that the proportion of fault rock as measured along

a line sample, for example along a core or bore-hole log, can

be used to estimate the bulk rock permeability of the fault

damage zones by assuming an efficiency of 50%, regardless

of the length distribution of faults. For this estimate the

required information is simply the fault rock proportion

measured from core or bore-hole logs and laboratory

measurements of host rock and fault rock permeability.

Estimates of bulk permeability of normal fault zones in

high porosity sandstones, including their damage zones

have been made by Antonellini and Aydin (1994, 1995) and

Shipton et al. (2002). They used the harmonic average of the

permeability of fault components (deformation bands, zones

of deformation bands, slip planes and fault core) to estimate

the bulk permeability perpendicular to the fault plane, and

the arithmetic average for bulk permeability parallel to the

fault plane. Antonellini and Aydin (1994) found a reduction

of bulk permeability across the fault zone, relative to host

rock, of almost two orders of magnitude (1.35 £ 1022) for a

major normal fault with throw in excess of 1000 m. The

reduction due to deformation bands alone was closer to one

order of magnitude (7 £ 1022). The ratio of deformation

band permeability to host rock permeability in their

calculations is 5 £ 1023. Shipton et al. (2002), using a

permeability ratio of deformation band to host rock of

7 £ 1024, estimated the reduction of bulk permeability,

relative to host rock, across normal faults with throws of

around 30 m as being up to two orders of magnitude (1022–

3 £ 1022). These estimates assume infinitely continuous

faults, and thus give a lower limit to bulk permeability

perpendicular to, and an upper limit on bulk permeability

parallel to, the major fault.

To compare the above estimates of bulk permeability

with those from the modelling presented here, the data on

fault damage zone width, number of deformation bands and

deformation band width from Shipton et al. (2002, Table 4)

was used to recalculate bulk permeability perpendicular to

the major fault from deformation bands alone, assuming a

permeability ratio between deformation bands and host rock

of 1024. This exercise has also been applied to data from

Hesthammer et al. (2000) from a frequency histogram of

deformation bands in a fault damage zone from a 45 m

throw normal fault in the Gulfaks field. Here a deformation

bandwidth of 1 mm, as in Shipton et al. (2002), which lies

within their observed range (0.5–5 mm), is assumed. This

gave bulk permeabilities relative to host rock across the

fault zones ranging from 2 £ 1022 to 3.6 £ 1022 for the data

from Shipton et al. (2002) and 9 £ 1023 for the data of

Hesthammer et al. (2000). Converting these values to 1=�k 2

1 and calculating the total deformation band width as a

proportion of the damage zone width (fault rock proportion)

allows these values to be plotted on Fig. 15 and compared

with the model results. Since the harmonic average was used

to calculate these bulk permeabilities, they plot on the 100%

efficiency line (see Fig.15). At the corresponding 50%

efficiency, the data from Shipton et al. (2002) plot near the

centre of results from model 3 with a length exponent of 2.2,

while the data from Hesthammer et al. (2000) plot near the

centre of results from model 3 with a length exponent of 1.8,

and thus both agree well with the model results.

For an estimate of bulk permeability parallel to the major

fault, Antonellini and Aydin (1994) and Shipton et al.

(2002) used the arithmetic average of permeabilities of fault

zone components. This results in bulk permeabilities very

close to that of host rock (Shipton et al., 2002) to a factor of

two lower than host rock (Antonellini and Aydin, 1994).

However, as noted by several authors (Antonellini and

Aydin, 1994; Shipton and Cowie, 2001), deformation bands

form well-connected networks in 3D. Thus flow parallel to

the fault zone must involve passing through deformation

bands and the arithmetic average will overestimate

permeability in this direction. The model results presented

here suggest that permeability parallel to the major fault

may be as much as one order of magnitude lower than host

rock permeability. Since the harmonic average tends to

underestimate permeability across the fault zone, and the

arithmetic average overestimates bulk permeability parallel

to the major fault, these methods can result in greatly

overestimated permeability anisotropy.

From the model results, an analysis of the relative effects

on bulk rock permeability of the fault damage zone (the

focus of this paper) and the fault slip zone shows that the

fault damage zone has a significant impact on the bulk

permeability of the whole fault zone if the permeability of

the slip zone fault rocks is similar to, or at the most one

order of magnitude lower than, the permeability of

deformation bands. The data from Shipton et al. (2002,

Table 4) for a normal fault in porous sandstones can be used

to compare the bulk permeability contributions of the

damage zone and the slip zone, and the whole fault zone. In

this case, the fault core permeability (1.4 mD) is higher than

that of deformation bands (0.4 mD). Using their data on the

number of deformation bands and the width of the damage

zone allows the bulk permeability of the damage zone alone

to be determined, from the harmonic average, as 70–

120 mD. Taking the fault core alone into account gives

permeabilities of 54–181 mD, showing that fault damage

zone and fault core give approximately similar contributions

to bulk permeability. Comparing these figures with their

estimates for the whole fault zone of 35–72 mD shows a

reduction in bulk permeability due to the addition of the

fault core of much less than an order of magnitude. Since, in

this case, the permeability ratio, R, of the fault core to the
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deformation band is less than one, this is in agreement with

the model results (Fig. 16).

In cases where the slip zone dominates the bulk

permeability of the fault zone, the presence of the fault

damage zone is still likely to have an important impact on

the nature of two-phase flow and contaminant transport. It

has been seen (Fig. 7) that the network of minor faults in the

fault damage results in highly tortuous fluid pathways across

the fault zone. In the absence of a damage zone, the

effectiveness of the slip zone as a barrier to hydrocarbons or

contaminants would be controlled by the places at which the

thickness of fault rock is a minimum, places at which high

pressure gradients would develop. The presence of the fault

damage zone may shield these areas from such high

pressure gradients by providing a further barrier to flow.

In this way, the fault damage zone may be a major

contributor to the containment properties of major faults,

even when they provide only a minimal contribution to bulk

fault zone permeability.

11. Conclusions

This numerical flow modelling study has shown how

flow behaviour and bulk rock permeability vary with the

spatial and orientation model type, the exponent of the

power law length distribution, and the sub-region size. The

main conclusions are as follows:

1. Of the three spatial and orientation models of fault

damage zone architecture, model 3, which incorporates

hierarchical clustering and faults oriented preferentially

about the main fault, shows fault frequency profiles that

most closely resemble natural fault damage zones.

2. Flow modelling through the 2D fault networks sub-

sampled from the fault damage zone model show that

preferential flow paths are developed for both flow

perpendicular and parallel to the fault. Local flow

magnitudes cover a wider range of three to four orders

of magnitude.

3. The frequency distribution of bulk permeability is close

to log–normal, with broader distributions (larger var-

iances) for small sub-region sizes. Mean log permeability

is constant with sample size. At the scale of the entire

fault damage zone width (50 m), 99% of the permeability

distribution spans an order of magnitude.

4. Mean log bulk permeability predicted by the models is

between one and two orders of magnitude lower than the

rock matrix permeability for flow perpendicular, and up

to one and a half orders of magnitude lower for flow

parallel, to the main fault.

5. Incorporating realistic orientation distributions (models 2

and 3) results in permeabilities more than half an order of

magnitude different from the random model 1, resulting

in anisotropies of around one order of magnitude.

Incorporating spatial clustering (model 3) results in

similar mean log bulk permeabilities but with higher

variances.

6. A power law exponent of 1.8 results in bulk perme-

abilities half an order of magnitude lower perpendicular

to, and half an order of magnitude higher parallel to the

main fault, compared with an exponent of 2.2.

7. Fault damage zone efficiency as a flow barrier is defined

relative to that of a region with one uniform-thickness

spanning fault that contains the same proportion of fault

rock. At a sub-region size of 50 m (spanning the damage

zone), the damage zone is found to be 50% efficient

perpendicular to, and between 1 and 10% efficient

parallel to the main fault. The efficiencies of the fault

networks are not sensitive to the power law length

exponent.

8. The efficiency analysis provides a method of estimating

bulk rock permeability from measurements of the

proportion of fault rock in a damage zone based on

outcrop and core. Analyses from damage zone data in the

literature (Hesthammer et al., 2000; Shipton et al., 2002)

are consistent with the model results.

9. The fault damage zone makes a significant contribution

to the bulk fault zone permeability when the slip zone

fault rock permeability is up to one order of magnitude

lower than that of the minor faults. However, even when

the fault slip zone dominates the bulk permeability of the

whole fault zone, the fault damage zone is still likely to

make a significant contribution to the fault sealing

capacity.
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